Expression of Transient Receptor Potential Ankyrin 1 (TRPA1) and Its Role in Insulin Release from Rat Pancreatic Beta Cells
نویسندگان
چکیده
OBJECTIVE Several transient receptor potential (TRP) channels are expressed in pancreatic beta cells and have been proposed to be involved in insulin secretion. However, the endogenous ligands for these channels are far from clear. Here, we demonstrate the expression of the transient receptor potential ankyrin 1 (TRPA1) ion channel in the pancreatic beta cells and its role in insulin release. TRPA1 is an attractive candidate for inducing insulin release because it is calcium permeable and is activated by molecules that are produced during oxidative glycolysis. METHODS Immunohistochemistry, RT-PCR, and Western blot techniques were used to determine the expression of TRPA1 channel. Ca²⁺ fluorescence imaging and electrophysiology (voltage- and current-clamp) techniques were used to study the channel properties. TRPA1-mediated insulin release was determined using ELISA. RESULTS TRPA1 is abundantly expressed in a rat pancreatic beta cell line and freshly isolated rat pancreatic beta cells, but not in pancreatic alpha cells. Activation of TRPA1 by allyl isothiocyanate (AITC), hydrogen peroxide (H₂O₂), 4-hydroxynonenal (4-HNE), and cyclopentenone prostaglandins (PGJ₂) and a novel agonist methylglyoxal (MG) induces membrane current, depolarization, and Ca²⁺ influx leading to generation of action potentials in a pancreatic beta cell line and primary cultured pancreatic beta cells. Activation of TRPA1 by agonists stimulates insulin release in pancreatic beta cells that can be inhibited by TRPA1 antagonists such as HC030031 or AP-18 and by RNA interference. TRPA1-mediated insulin release is also observed in conditions of voltage-gated Na⁺ and Ca²⁺ channel blockade as well as ATP sensitive potassium (K(ATP)) channel activation. CONCLUSIONS We propose that endogenous and exogenous ligands of TRPA1 cause Ca²⁺ influx and induce basal insulin release and that TRPA1-mediated depolarization acts synergistically with K(ATP) channel blockade to facilitate insulin release.
منابع مشابه
The role of noggin in regulation of high glucose-induced apoptosis and insulin secretion in INS-1 rat beta cells
Objective(s):The purpose of this study was to investigate the effects of Noggin on high glucose-induced apoptosis and insulin secretion in pancreatic beta cells. Materials and Methods: Different concentrations of glucose were used to examine their effects on INS-1 rat beta cells in vitro. When specific siRNA targeting Noggin and recombinant Noggin were added, apoptosis and insulin secretion wer...
متن کاملThe effect of ghrelin on Kiss-1 and KissR gene transcription and insulin secretion in rat islets of Langerhans and CRI-D2 cell line
Objective(s): Ghrelin is a peptide hormone that has been shown to have numerous central and peripheral effects. The central effects including GH secretion, food intake, and energy homeostasis are partly mediated by Kiss1- KissR signaling pathway. Ghrelin and its receptor are also expressed in the pancreatic islets. Ghrelin is one of the key metabolic factors controlling insulin secretion from t...
متن کاملThe role of transient receptor potential ankyrin 1 (TRPA1) receptor activation in hydrogen-sulphide-induced CGRP-release and vasodilation.
Activation of transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels on capsaicin-sensitive sensory neurons causes release of inflammatory neuropeptides, including calcitonin gene-related peptide (CGRP). We investigated whether the hydrogen sulphide (H(2)S)-evoked CGRP release from sensory neurons of isolated rat tracheae and H(2)S-induced increases in the microcirculat...
متن کاملHypoxia-inducible Factor-1α (HIF1α) Switches on Transient Receptor Potential Ankyrin Repeat 1 (TRPA1) Gene Expression via a Hypoxia Response Element-like Motif to Modulate Cytokine Release*
Transient receptor potential ankyrin repeat 1 (TRPA1) forms calcium (Ca(2+))- and zinc (Zn(2+))-permeable ion channels that sense noxious substances. Despite the biological and clinical importance of TRPA1, there is little knowledge of the mechanisms that lead to transcriptional regulation of TRPA1 and of the functional role of transcriptionally induced TRPA1. Here we show induction of TRPA1 by...
متن کاملEpithelial transient receptor potential ankyrin 1 (TRPA1)-dependent adrenomedullin upregulates blood flow in rat small intestine.
The functional roles of transient receptor potential (TRP) channels in the gastrointestinal tract have garnered considerable attention in recent years. We previously reported that daikenchuto (TU-100), a traditional Japanese herbal medicine, increased intestinal blood flow (IBF) via adrenomedullin (ADM) release from intestinal epithelial (IE) cells (Kono T et al. J Crohns Colitis 4: 161-170, 20...
متن کامل